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ABSTRACT

This research seeks to develop non-invasive burn depth evaluation methods from
non-contacting visible and near-infrared spectroscopic measurements. In previous years,

we demonstrated that features of the optical reflection spectra of burn wounds can be

correlated with the depth of burn. An imaging system was built which determined, with

accuracy equal to or better than that of a skilled burn surgeon, the probability that burn

sites would heal within three weeks from date of injury. Our goal for the current project

is to investigate the optical reflectance properties of burns, utilizing the techniques of

multivariate analysis, in order to improve the reliability of this instrument.

Excellent progress has been made toward achievement of the goals of this project.

In the first' r a commercial spectrophotometer was purchased and modified to make

optical reflection measurements in both the visible and near-infrared regions (450-1800
nm). A library of reference spectra was acquired with this instrument.

During the second year, experiments were conducted to understand the major

components of the reflectance spectra of human skin in vivo. Two dynamic processes
which influence in vivo spectra were studied to improve our knowledge of burn

physiology: temperature and ischemia. These were modeled in healthy human subjects.

The spectrum of pure water, which is highly temperature dependent and dominates the

spectra of biological tissues, was mathematically analyzed for the purpose of

compensating for water absorbances in tissues.

Thirty four patients at Harborview Burn Center were studied, and the reflectance

spectra of their burns analyzed with multivariate statistics. An unexpected absorption

band correlating to burn depth was observed at 630 nm and was identified as arising from
methemoglobin. Based on the foregoing results, a more reliable algorithm was developed

for the imaging system. The new algorithm incorporates wavelengths which measure this
methemoglobin absorption. It has been tested by simulating imaging system responses

from spectrophotometer data. The new model predicts the healing potential of 110 burn

sites with 88% accuracy, significantly better than simulated responses from the old

imaging system (79%).
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INTRODUCTION

Burn injuries affect more than two million American victims each year. Two

hundred thousand of these will require hospitalization and 10,000 will die.1 Skin grafting

has significantly reduced infection, mortality, and disfigurement in patients with deep

wounds. Shallow wounds, however, produce smoother skin when they are allowed to

heal on their own. As a general rule, only burns which do not heal in 21 days benefit

from grafting2,3. An accurate diagnosis may be obtained by waiting for 3 weeks before

deciding to operate, but it has been shown that grafting within the first few days produces

better surgical results and reduces hospital stay*2. This has been the driving force behind

the development of methods to predict potential healing times.

For a wound to heal well (and within 21 days), it must re-epithelialize from

remnants of epithelium in the lining of ducts and hair follicles. No one has yet proposed

a method to predict healing by measuring the abundance of epithelium. Instead, most

estimate the depth of irreparably damaged tissue with respect to the total thickness of the

dermis.

Many hospitals today use a technique called clinical assessment which combines

visual inspection with simple tests, such as the Wound's sensitivity to touch4. Data

collection, even for the largest and most variegated wounds, requires less than 15

minutes and does not cause excessive pain, neither from the tests themselves or from

prolonged exposure of the wound. However, the accuracy of this technique is highly

dependent on the experience of the assessor. Other techniques, including

histopathological inspection,' 6'7 topical application of dyes,8 radio isotope studies,9

ultrasound,'0 thermography, " 2pulse oximetry,13 laser doppler flowmetry,14,15

and multispectral photographic analyzers,16 ' 17 have proven to be slower, more painful,

or less reliable and are less commonly used.
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The Bum Depth Indicator

In 1980 we built the Burn Depth Indicator (BDI), a hand-held probe which

illuminated a 3 cm 2 area of wound with pulsed light from three LED chips and measured

the reflected light. This technique proved to be as fast as clinical assessment, less

painful, and significantly more reliable.18' 19 We developed a similar instrument in 1986,

which provided spatially resolved burn wound diagnosis. This device, the Imaging Burn

Depth Indicator (IBDI), produces a color-coded image of a wound. 2 '21'

Selection of the wavelengths used by the BDI (green (550 nm), red (640 nm), and

near infrared (880 nm)) was based on the visible appearance of burn wounds and the

discovery that near infrared light is reflected more by deep burns than shallow.*16 Van

Liew interpreted the BDI measurements in terms of blood volume, blood oxygenation, and

eschar thickness. The results of his model agreed well with both the measured data and

the expected physiology. 1 9 23

Spectroscopic Oximetry in viva

Measurement of blood oxygenation by spectral analysis of reflected or transmitted

light is a well established method. Visible (400-700 nm) and short-wave near infrared

(700-1100 nm) light have been employed. Hemoglobins have 7r - &*, d -. d* and f - f*

electronic transitions in this region. Oxidation and ligand binding influence the spectrum

substantially (Figure 1). A non-invasive oximeter, the Pulsed Oximeter,24 now common

in hospitals, uses transmission of 660 and 920 nm light through a finger tip. Its results

correlate well with arterial blood 02 saturation measured by conventional, invasive

methods.25 The success of this method has stimulated research on other non-invasive,

spectrophotometric oximeters. These new instruments measure either transmitted or
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reflected light and have been applied to the head,26' 27 brain, 28 heart,*28 and

skin. *28,2 These methods are rarely calibrated to give absolute values, due to the

unavailability of reference data, but they are quite useful for clinical trend monitoring and

kinetic studies, where relative changes are important.

Near Infrared Spectroscopy

Near infrared light (700-2500 nm) is absorbed by other biological components

besides hemoglobins. Most near infrared (NIR) absorbances are due to overtones and

combination bands of vibrational transitions, primarily C-H, N-H, and O-H. This region

has been used in the agricultural and food processing industries to determine, for

instance, protein, oil, and moisture content. 3 ' 31 Samples are frequently analyzed in

solid or powdered form by diffuse reflectance. The resulting absorption bands, despite

the high degree of light scatter in the samples, are often linear with concentration.

However the spectral bands are broad and overlapping, making analysis difficult.

Calibrations are therefore based on empirically observed spectral behavior rather than on

first principle considerations.

Multivariate Statistics

The key that has unlocked the potential of NIR spectroscopy is multivariate

statistics, mathematical methods for analyzing data sets which include multiple

measurements for each sample. For spectroscopy, each filter or each monochromator

setting is used to obtain different information, producing a response vector for each

sample. Multivariate statistics assists the analyst to find an empirical mathematical model

which will best reproduce the values of one or more constituents, given the response
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vectors of a set of calibration samples. Once the model is obtained, it may be used to

estimate values for prediction samples, those whose constituents are unknown.

Constituents are usually chemical concentrations, but may also be physical

properties, e.g. crystallinity of nylon yarns, or abstract properties, e.g. the loaf score of

flour (the volume, appearance, texture, and spring of bread made with that flour) (31).

The property needs only to have some systematic relation to the spectra. Multivariate

statistics can be used to analyze the spectra of burn injuries to estimate healing potential,

blood oxygenation, and other properties. Further, the results of these analyses and a

more precise understanding of the spectra of burned skin can be used to optimize the

algorithm currently used by the IBDI.
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PREUMINARY RESEARCH

THE SPECTROMETER

The instrument used is an LT Quantum 1200 spectrometer, which was specifically

modified for this project by the manufacturer. It employs a concave holographic grating

and a manually switched pair of filters to scan 900-1800 nm (first order) and 450-900 nm

(second order). Ught is conducted to the sample through a 2 m fiber optic cable (0.5 cm

bundle). The reflected light is measured by two 450 PbS detectors in a module at the

end of the cable (Figure 2). The module is suspended 1 to 2 cm over the sample and

supported by a tripod. Data is collected for 40 seconds (100 scans) and analyzed with

software written in the MATLAB 32 program environment. This instrument can measure

the reflectance of 1 cm2 of skin in less than 3 minutes, including the time required to

position the patient and detector. It is completely painless, non-contacting, and non-

destructive.

REFERENCE SPECTRA

Reference spectra of distilled water, mineral oil, collagen, and whole blood (Figures

3-6) were obtained using the LT spectrometer in trans-reflectance mode. Band

assignments were made from Colthup type charts and other data*3° and are listed in

Table I. Reflectance spectra were also acquired from pork fat, pork muscle, beef tendon,

and human skin in vivo (Figures 7-10). These spectra are composed of combinations of

hydrocarbon, protein, and water absorbances. The primary absorber in biological tissues

is water (80% by weight). Since the spectrum of water is highly temperature dependent,

water spectra were studied in detail (pages 35 - I ).

Although muscle, tendon, and skin are primarily water, their spectra are remarkably
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different. The Beer-Lambert law (Absorbances of components add linearly),

A1 = -1Og 10 (lii / 10j) = bi (k-a j kCik) (1)

Aij = P' sample absorbance at the rh wavelength

It, = intensity of transmitted radiation

Io,11 = intensity of incident radiation

ai, = absorptivity of the k chemical component at the 1h wavelength,

bi = path length of light through sample = thickness of sample

Cik = concentration of the k analyte in the jth sample

and the diffuse reflectance approximation

Ali log(1 /Rij) (2)

Ri= (' t , ii) / (oJi) (3)

are somewhat inappropriate for these samples; the assumptions on which these

equations are based are not valid. Light scatter, stray light, specular reflectance, and

distribution error cause pronounced non-linearities in the spectra of these tissues. The

multiple layers of tissues in skin produce additional distortions. These non-linearities

affect both the visible and NIR spectra and make theoretical analysis extremely difficult.

On the other hand, they may provide clues to physical parameters, such as surface

texture and hydration, distribution of blood cells in vessels and tissue, disruption of

connective tissue layers, etc. These parameters generally cannot be measured directly,

but their effects on the spectra of burn wounds may correlate empirically with healing

time.
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IN VIVO STUDIES

Skin Temperature

Preliminary in vivo studies were done to observe spectral changes due to expected

dynamic processes. The first study investigated the effect of temperature. When skin is

warmed, the capillaries dilate in a manner similar to the hyperemic response in burns.

Reflectance spectroscopy should detect temperature dependent shifts in water bands and

an increase in hemoglobin concentration.

Spectra were taken from the forearms of seven people at temperatures ranging

from 9 to 35oC. The skin was cooled with water and heated with a lamp. Temperature

was measured with a small thermistor at the surface of the skin.

One subject was studied in detail from 9 to 36o C. Figure 11 a shows second

derivative NIR spectra. The largest variations appear at 1150 and 1213 nm. Difference

spectra were computed using the spectrum taken at 9oC as a reference (Figure 11 b).

The large peaks at 970, 1155, and 1390 nm in the difference spectra are attributed to the

shifting of the water bands at elevated temperatures (Figure 11 c).

Similar results were observed in all seven subjects. The subjects were divided into

two groups. Step-wise linear regression was used to build two 3 wavelength models

using each group as a separate calibration set. Both models used similar wavelengths

(1016,1073,1156 and 1001,1076,1150 nm) The 1150,1156 and 1001,1016 nm

wavelengths correspond to spectral changes of pure water. Each model was used to

predict temperatures of the subjects in the other group (Figure 12). The standard errors

of prediction (SEP) were 1.30 and 1.4o, approximately equal to the estimated accuracy

of the reference method (1.5oC). The correlation coefficients were both 0.982. These

results suggest that it may be possible to measure the surface temperature of a burn
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wound and to monitor the inflammation of the wound as it responds to injury or infection.

Ischemia

The second study investigated the effect of ischemia, which may cause destruction

in the zone of stasis. The largest changes would be expected in the visible region where

the double-banded absorbance of oxyhemoglobin (HbO2) would be replaced by the

single, broad band of deoxyhemoglobin (Hb) (Figure 1 a).

Ischemia was induced in the forearm of a healthy volunteer by applying a pressure

cuff (150 mm Hg) for 8 minutes. Spectra were recorded in the visible region (450-780

nm) every 20 seconds, while circulation was restricted and for 8 minutes after it was

released.

Figure 13 shows spectral (second derivative) shifts that occurred during ischemia.

The two bands of oxyhemoglobin (540, 575 nm) are visible, as are the 555 and 760 nm

bands of deoxyhemoglobin. Principal Component Analysis (PCA) resolves the spectra

into two components (Figures 14a, 14c) corresponding to the average spectrum (primarily

HbO) and the Hb-HbO2 difference. The behavior of these components agrees with the

known physiology of cuff induced ischemia: when the circulation is restricted, the blood

becomes deoxygenated. When the restriction is released, the initial surge of new blood

causes a hyperemic increase in blood volume, primarily oxygenated arterial blood, which

gradually returns to normal equilibrium.3 Figures 14b and 14d show the scores

calculated by PCA, the estimated "concentrations" of HbO2 and Hb components that were

derived from the spectra. The deoxygenation (0-8 min.), overshoot (8 min.), and

reestablishment of equilibrium (8-16 min.) are clearly visible. This study demonstrates that

the LT spectrometer is capable of detecting changes in local blood oxygenation in the

skin, without touching the patient or requiring pulsed blood flow.
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HUMAN BURN PATIENTS AT THE NORTHWEST BURN CENTER

The main body of this research project is the analysis and interpretation of the

spectra acquired from the skin of seriously burned patients at the Northwest Burn Center

at Harborview Hospital.

EXPERIMENTAL

Human Subjects

Forty-three patients were studied at the Northwest Burn Center, Harborview

Medical Center in Seattle, Washington, over a 13 month period. One fifth of the injuries

were selected by the research nurse to give a representative sample of typical superficial,

shallow partial, deep partial, and full thickness burns. The remainder were chosen

because th.y were indeterminant or unusual. The medically fragile, including elderly,

hemophiliac, and mentally ill patients, were excluded. Children were also excluded.

Patients were examined on the third day post-burn as was done in previous

studies.18 A few of the unusual injuries were studied on the fourth day, because the

patients were transferred from other hospitals and were not available on the third day.

Two to five sites were chosen by the research nurse, often with the

recommendation of the attending physician. After routine cleaning and debridement

(removal of loose dead tissue), these sites were wrapped in cellophane to prevent drying

and infection. Large wounds were rebandaged, except for the selected sites. The patient

was then returned to his own roorh and positioned either in bed or in a chair. The

cellophane was removed prior to spectral data acquisition.

One spectrum was acquired from each site, using the LT Quantum 1200

spectrophotometer.34 Site locations were recorded on polaroid photographs. This
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procedure generally took 15 to 30 minutes, including the time required to position the

patient and to remove the equipment afterwards. If the patient was willing, IBDI images

were also acquired, generally requiring another 10 to 20 minutes.

The injuries were followed b visual inspection for one month. The sites from

which spectra had been acquired were classified according to outcome into three

categories: Shallow (healed in less than 21 days), Deep (healed in more than 21 days),

and Unknown. Most sites which were grafted were classified as deep. Those which were

clearly shallow but were excised due to their proximity to a more severe injury were

classified as shallow. If an injury was not grafted, it was inspected by the research nurse

on or near the 2 18' day to determine if it had healed. When that was not possible, the

information was obtained by phoning the patient. Sites for which there was insufficient

information were classified as unknown and were excluded from analysis.

Of the sites whose outcomes were known, 34 were deep and 76 were shallow.

The most common etiology was flame (52%), followed by scald (22%), chemical (8%),

flash (8%), contact (6%), and grease (4%). The mean age of the patients was 33 years

and the mean TBSA was 6%. There were 3 hispanics, 2 blacks, and 1 oriental. Burn

locations included face, arms, hands, palms, backs, sides, legs, and feet.

Mathmatical Methods

The multivariate mathematical methods needed to interpret data include

preprocessing, calibration, and classification techniques. The goal is to find a useful

relationship between a sample's spectrum (r) and the values of its constituents (C).

Constituents are usually chemical concentrations, but may also be physical properties,

abstract properties, or classifications. The property needs only to have some systematic

relation to the spectra.
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The notation used will be as follows: Matrices will be written in bold, upper case

(A, B, C), row vectors in bold, lower case (a, b, c), and scalars in normal italic (A, B, C,

a, b, c). Column vectors will be written as the transpose of row vectors (aT, bT, CT). Each

spectrum will be referred to as a response row vector r, with length J, where J is the

number of discrete wavelengths contained in each spectrum. I spectra grouped into a

matrix will be R, with dimensions I by J. The elements of R will be written as rj. The

matrix C, will be I by K, where K is the number of spectrally distinguishable constituents.

The elements of C are Clk.

Preprocessing

Preprocessing transforms the spectra such that the spectral features which

correlate to the constituents are maximized and the remainder are minimized. The first

step is usually linearization with respect to constituent concentration. Normally the

logarithm of instrument response (R) is used for linearization:

R =1/I (3)

where 10 is the intensity of the light incident on the sample and I is the intensity of the light

that returns from the sample and is measured by the instrument. The sample absorbance

(A) is

A = -Ioglo(R) (2)

and is proportional to analyte concentration (c) under certain conditions. The Beer-

Lambert law is

A = abc (4)

where b is the path length, the distance the radiation traveled through the sample, and

a is the molar absorptivity, a constant characteristic of the analyte. For a more complex

sample, the sample absorbance (A,,) is a linear sum of the absorbances of all
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components.

Aij =k Aiik = b, (kI ak Cik) (1)

It is assumed that all of the radiation travels the same distance through the sample so that

b, is constant for all rays. For diffuse reflectance, this is not strictly true, but it is often a

useful approximation.

Other common transformations include mean centering, baseline subtraction, and

derivatives. The equation for mean centering is

(rjT)mean centered = rjT" 1 /J E(rj) (5)

where rjT is the column vector of log(l /R) for the /h wavelength and all samples. Baseline

subtraction is

(rI)bmlincorrected = ri - ri,Jb (6)

where r, is the spectrum for sample i and rijb is the absorbance at the J wavelength.

An estimation of the second derivative using a finite difference function is

r, = (4+g- + 4g) / (7)

where f4 is the intensity at the j' wavelength and g represents the gap size of the

derivative.

Calibration

Calibration is used for continuous constituent values, such as chemical

concentrations or physical properties. Calibration models must be validated before they

may be used for prediction. In calibration, a model is developed that relates the spectra

data matrix (R), composed of the spectra vectors r, to the constituent matrix (C),

composed of the elements Clk, for a set of samples, called the training set or the
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calibration set (designated by the subscript c). A second set is used for validation. The

model is used to predict the constituent values of the second set. Poor prediction

indicates that either irrelevant data, such as instrument noise was included in the

calibration model (overfitting) or that there is variance in the validation set that was not

present in the training set, such as a new component. Once the model has been

validated, it may be used to predict the constituents of unknown samples (designated by

the subscript p).

Another method of validation, leave-one-out cross validation, is useful when there

are only a few spectra available. Instead of dividing the set in two, half for the calibration

set and half for the prediction set, all samples except one are used for the calibration set

and the remaining sample becomes the prediction set. This is repeated I times, leaving

out and predicting each spectra once. The result gives an estimate of the accuracy of

the model that uses all I samples. Since the spectra acquired from different sites on the

same wound may be highly correlated, this approach was modified: all spectra from a

single patient were left out and predicted together.

Classical Least Squares

The calibration model generally consists of a vector of matrix of coefficients (S) that

relates the constituent matrix to the spectral matrix. The coefficients are typically

estimated by least squares or similar methods. The most straight forward methods

calculate S assuming the Beer-Lambert relationship.

Classical least squares (CLS) is a direct calibration technique based on the Beer-

Lambert law, which in matrix form is

R = C S + ER (8)

where S is the estimated pure component spectra (sk _ a,, b,1) and E. is the matrix of
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spectral errors. The S matrix is determined by

S = Rc C +  (9)

where RC and C. are the spectral and concentration matrices of the training set. C" is

the Moor-Penrose pseudoinverse:3

C+ = (CT C)1 CT (10)

By solving these equations, ER is minimized in a least squares sense. The estimated

concentrations (6T), of all k components in the ith unknown sample with spectrum (rpT)i

is

(6pT)i = (rpT)i S +  (11)

It is often useful to include constraints, such as requiring all elements in S and ( pT)i to

be greater than or equal to zero.

Muftiple Unear Regression

When the sample spectra cannot be approximated as a simple sum of pure

component spectra, either because some of the components are unknown or because

Beer's law is inapplicable, indirect calibration in used. The basic model is

C = R P + Ec  (12)

where Ec is the error in the concentration matrix and P is the I by J matrix of coefficients,

similar to S. C may be any constituents, not just chemical concentrations. The equation

is solved to minimize Ec , and prediction is

(SpT)i = (rpT) P (13)

Since estimating P involves calculating the pseudoinverse of Rc , J must be small. If the

spectra originally contain a large number of wavelengths, there are two methods of

simplifying the spectral data: selecting a few relevant wavelengths and factoring the

whole spectrum.
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Multiple linear regression (MLR), also known as inverse least squares-6 and the

P-matrix approach37 , is an inverse least squares model that uses the spectral data from

a small, selected set of wavelengths. The model is

CkT = R pkT + ec (14)

where pkT is the vector of regression coefficients for the kth constituent and ec is the error

in the concentration matrix.

The most common method for choosing the wavelengths to use in the MLR model

is to calculate the correlation coefficients between all wavelengths and the constituent of

interest. The wavelength with the greatest correlation in chosen as the first wavelength

for the model. The variance associated with the correlation is removed from tha spectral

and constituent data and a second wavelength is chosen, and so on. Other methods

also exist.

Principal Component Regression

Principal component regression (PCR)- 3 ," uses the same fundamental definition

as MLR but decomposes the full spectral matrix R into two factor matrices T and P,

R = T P + ER (15)

which can be calculated by singular value decomposition:

R =VSU T + ER (16)

where V is / by A, S is A by A, and UT is A by J, and A is the number of factors (principal

components). T and P are VS and UT, respectively. The matrix T contains "scores,"

linear combinations of concentration.data, and P contains "loadings," linear combinations

of spectral data. Scores and loadings are difficult to interpret in terms of the individual

components. The concentrations can be estimated from the scores,

c = T q + e. (17)
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q s Te+ cc (18)

Cp= Rppr= CC (19)

where q is the vector of coefficients that relates c to T. If 6p is not calculated, this method

is known as principal component analysis (PCA) and does not require any constituent

values. This method is useful as a classification technique, particularly when constituent

values are unavailable.

Classification

When constituent data is discrete, such as the place of origin of the samples or

"acceptable" and "unacceptable", classification algorithms are used. The most common

is K Nearest Neighbors (KNN). The samples are treated as points in a multidimensional

space and their "nearness" to each other are calculated:

Oij = IIr, -rll (20)

where Di is the distance between samples i and j, and r, and rj are the spectral or score

vectors for the two samples. It is assumed that samples within a class will be closer to

each other than to samples in another class.

Uke calibration, KNN classification requires a training set of samples whose

classifications are known. However, there is no matrix of regression coefficients, an

unknown sample is simply compared to all samples in the training set, one at a time. If

K = 1, the unknown sample is assigned to the class of the training set sample that it is

closest to. Otherwise the classifications of the K nearest training samples are considered.

The data used for KNN is often scaled (weighted) so that the variables which have

the largest correlation to the classification are bigger than those which are less relevant.

One common method of determining which variables are relevant is the variance

weight,4° which is the ratio of the intercategory variances to the sum of the intracategory
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variances. The equation is

wab = 2 * [(1/Na)-Xa2 + (1/Nb),Xb2 - (2 /NNb)KazXb] /

[(1/Na)Z(XaXam) 2 + (1 /Nb)T(Xb-Xbm) 2]  (21)

where Na and Nb are the number of samples in classes a and b, x are the values of the

variable in question, and xam is the mean of x for samples in class a.

RESULTS

Case Study

A case study is included here to illustrate typical results for shallow and full

thickness burns. Patient #14 had a small scald burn on her foot. Hot water had run

down into her high-top boot, producing a shallow 'partial thickness burn at the top and

a deep burn where the water pooled at the bottom. In the spectrum of the shallow partial

thickness bum (Figure 15a) the oxy- and deoxy- hemoglobin bands (400-600 nm) are very

intense, because the epidermis was absent and the wound was inflamed. In the near

infrared region (700-1800 nm) there are three absorbance bands that arise from the

overtones of O-H stretching modes of water (960,1150, and 1450 nm). The discontinuity

in the spectrum at 900 nm is an instrumental artifact, caused by a filter change.

The spectrum of the deep burn (Figure 15b) was markedly different. The baseline

was considerably higher and the water bands in the near infrared were less intense. The

cause of these differences is unknown. The 560 nm hemoglobin bands are also less

intense, as there is less blood in the injured skin. All of the above had been expected.

At 630 nm, however, the is an unanticipated band. The intensity of this band, evident as

a shoulder on the oxy-/deoxy- hemoglobin peak, suggested that it was due to another

form of hemoglobin. The band was attributed to the acid form of methemoglobin which
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has a band at 630 nm (Figure la). This compound is relatively well known and is present

in normal subjects at the 0.5-1.0% level. Other hemoglobin derivatives may also be

present in smaller quantities.

Principal Component Models

Raw Spectra

The spectra from all of the burn wounds are shown in Figure 16. Twelve spectra,

acquired from discolored (black, brown, or green; n = 10) and first degree (n = 2) burns

contain spectral features that are not relevant to the discrimination of shallow and deep

burns. They were not included in any of the calibration models, to avoid making the

models more complicated than necessary, but were included in predictions to

demonstrate that they would not be misclassified. These spectra are shown in Figure 16

and subsequent figures as dotted lines.

The spectral regions which correlate to burn depth were located by calculating the

variance weights (Equation 21) for the absorbances at each wavelength (Figure 17).

There is some correlation between 550 and 580 nm, but little or none (variance weight

= 2) anywhere else. This indicates that the hemoglobin absorbances (550-580 nm) have

some correlation to burn depth, which is in accord with one of the fundamental tenets of

clinical assessment, that the darker pink a wound is, the more likely it is to be shallow.

The low correlation in other portions of the spectra indicates that the baseline offsets are

unrelated to burn depth and are probably caused by irreproducibility in the source /

sample / detector geometry.

Since the major spectral features do not correlate strongly to burn depth, the

spectra were analyzed by Principal Component Analysis (Equations 15-19) to locate minor

features which might be more relevant. The spectra would be expected to display at least
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four major types of variation, corresponding to baseline offsets, multiplicative factors (path

length and total blood concentration), oxygenation of the blood, and methemoglobin

concentration. Minor variations, representing minor chemical components or spectral

non-linearities would also be expected. The first four principal component loadings

(spectral domain, Figure 18a,b) show that there are indeed at least four significant types

of orthogonal spectral variance. The next four (Figure 18c,d) model only a small amount

of the total variance. It is possible, but unlikely that these later factors are significant.

The principal component scores (concentration domain, Figure 19) show that the

first two factors, are dominated by irrelevant effects of sample/instrument geometry.

Similar effects have been observed in the diffuse reflectance spectra of other irregularly-

shaped samples. 41 The third and fourth principal components, however, are correlated

to burn depth. The variance weights for the first eight principal components are 2.3, 2.5,

2.7, 3.2, 2.5, 2.3, 2.0, and 2.0.

The distinction between "shallow" and "deep is a somewhat arbitrary division of a

continuous variable, the fraction of dermis destroyed. It might be expected that in a

multidimensional space, the scores for shallow burns might be located on one side and

those for deep burns on the other, with the borderline injuries inbetween (Figure 19b).

Shallow burns would most likely be closest to other shallow burns, etc., so KNN should

give reasonable results. The KNN algorithm in Pirouette42 successfully classified 100

(91%) of the 110 spectra, using 4 principal components. The optimal number of

neighbors to consider was found to be 2. Cross validation, leaving out one patient's

spectra each time (MATLAB program written by the author), successfully classified 101

(92%), using 6 principal components and considering 3 neighbors.

Assuming that there is only one continuous variable which relates to burn depth,

another possible method of classification is to define a multidimensional plane between
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the two classes. All scores on one side of the plane should represent shallow burns, and

all scores on the other side should represent deep injuries. This plane may be found by

rotating the axes so that the first axis corresponds to the direction of the variance in the

data which most clearly distinguishes between the two classes. The discrimination plane

is then perpendicular to the first rotated axis.

The algorithm used for single-plane discrimination involved 5 steps. The first step

was to mean-centers the scores. Then the mean-centered scores were range scaledN

and feature weighted,N according to the variance weight. The scaled data was then

rotated, two dimensions at a time, starting with those which have the greatest variance

weights. The best rotation was defined as that which produced the largest variance

weight for the first of the two dimensions. Once the best rotation was found, the

discrimination plane was defined perpendicular to the first axis, located so that the

number of misclassified calibration samples was minimized. The samples were classified

according to which side of the discrimination plane their rotated scores were located. The

MATLAB code for these programs are in Appendix B.

The scores, rotated in the first four dimensions, are shown in Figure 20. The

discrimination plane is also shown, projected as a line. All but 7 of the samples are

correctly classified by this plane. Including more than four dimensions does not improve

classification, since only the first four principal components contain much relevant

information. Cross validation, using 4 principal components correctly classified 102

(93%). The single-plane discrimination is slightly better than KNN because only one

dimension contains relevant information. The model is simpler and less influenced by any

single calibration sample.

The loadings, rotated in the same manner (Figure 21), show that there is a strong

positive correlation between the absorbance at 630 nm and the depth of the burn. This



23

is probably due to the absorbance of methemoglobin which appears to be characteristic

of deep burns. There is also a strong negative correlation at 570 nm, where

oxyhemoglobin absorbs. It is reasonable to assume that the more healthy, oxygenated

hemoglobin a wound contains, the more likely it is to heal quickly. The first rotated

loading is small for the wavelengths 650-700 nm indicating that this region, which contains

little hemoglobin absorbance, is not useful for prediction. This further supports the

previous results indicating that the baseline offsets are unrelated to burn depth.

Subsequent rotated loadings (not shown) are not correlated to burn depth (variance

weights < 2.2).
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Baseline subtracted spectra

Since the baseline offsets are useless, they can be removed without losing

information, approximating the baseline by the apparent absorbance at 700 nm (Equation

6, Jb = 700 nm). Among the resulting spectra (Figure 22) the spectral differences

between the two classes are more obvious. The intensity of the hemoglobin absorbance

(520-580 nm) is, on the average, greater for shallow injuries than for deep, but this

variable alone is insufficient for diagnosis. Considering only the intensity of the

absorbance, what the eye sees, only 69% of the injuries, at best, could be correctly

classified. Clinical assessment considers a few other variables and is potentially more

accurate.

Since the variance due to the offsets has been removed, fewer principal

components should be needed to describe the data set. The first four loadings (Figure

23) are similar to those from the raw spectra (Figure 18). The subsequent loadings,

however, contain more noise. The second and third principal components are most

highly correlated (Figure 24), rather than the third and fourth (Figure 19), and the variance

weights for the principal components are greater, 2.5, 4.6, 2.9, and 2.2 for the first four.

Prediction results from KNN and single-plane discrimination are not significantly better,

but the model is simpler.

Normalized spectra

Although the amount of blood visible in a wound is a good indication of its viability,

it is an unreliable indicator. Edema (inflammation) and hematoma (bruising) both increase

the amount of blood without increasing the healing potential. In this study, the diagnostic

errors made by the physicians were caused either by injuries that were outside the range

of their experience, such as an unusual chemical burn, or by deep injuries that appeared
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pink instead of white. To correctly diagnose these wounds it is helpful to focus on the

second factor which relates to burn depth, the methemoglobin content.

To remove the variance caused by variable amounts of blood in the skin, the

spectra were normalized to the maximum of the average spectrum (570 nm was chosen).

The normalization equation is

(r)normalized = (rI)baseline subtracted / ri,570nm (22)

where ri,57onm is the apparent absorbance of the jth spectrum at 570 nm. The

methemoglobin absorbance at 630 nm is clearly visible in the normalized spectra (Figure

25).

The removal of the multiplicative factors is inaccurate since this normalization is

somewhat simplistic, so the rank of the spectral data set does not decrease. But since

the data is simplified, the correlation to burn depth increases (Figure 26). The loadings

(Figure 27) are similar to those of the baseline-corrected spectra (Figure 23), but the

scores of the first two principal components (Figure 28) are more highly correlated. The

variance weights for the first four principal components are 3.5, 5.3, 2.8, and 2.2.

Prediction results are nearly identical to those from the baseline-corrected data.

Hemoglobin Spectra Model

Single Layer Model

The above results suggest that there is a single spectral feature or single

combination of interrelated features which is indicative of the depth of a burn wound.

Further, in the normalized spectra, the 630 nm absorbance, attributed to the acid form of

methemoglobin, correlated to burn depth. This suggests that the concentration of acidic

methemoglobin in the skin, relative to the total blood volume, is proportional to the

amount of tissue damage and, hence, to the length of time required for healing.
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Unfortunately, there is no way to test this hypothesis directly. Even if the patients

consented to having skin samples removed for analysis, conventional methods of

hemoglobin speciation are not applicable to solid tissue samples.

One alternative is to attempt to reproduce the observed reflectance spectra,

starting from the spectra of pure hemoglobins. Assuming that (a) the particles in the skin

scatter light isotropically, (b) the hemoglobin is uniformly distributed, (c) there is no

specular reflectance or stray light, and (d) the only absorbing compounds in the skin are

hemoglobins, then the reflectance spectra of the skin could be modeled as a linear sum

of pure hemoglobin spectra, using Classical Least Squares (Equations 8-11). None of the

assumptions are actually true and the hemoglobins used to acquire the basis spectra

were not 100% pure, so the model is not expected to fit the data precisely. The spectra

of the hemoglobins (the matrix S) are shown in Figure 29, including oxyhemoglobin,

deoxyhemoglobin, acid methemoglobin, base methemoglobin, and a baseline. The

spectra were fit to a reflectance spectrum of a burn wound, and a new spectrum was

reconstructed from the estimated hemoglobin concentrations. This was repeated for all

burn spectra.

Two examples are shown in Figure 30. The reconstructed spectra are not exactly

the same as the measured spectra, since the assumptions are incorrect. This simplistic

model does, however, give an estimate of methemoglobin in a burn, information which

has previously been unavailable. The resulting predictions are less accurate (79%) than

those from the empirical PCA models, indicating that the methemoglobin concentration

alone is insufficient to predict healing or that the fitting errors were too large, probably

both. However, the success of this model in discrimination does strongly support the

hypothesis that oximetric information correlating to burn depth can be obtained from the

spectra.
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Two Layer Model

Of the assumptions used in the above model, two are approximately true, one

might be true, and one is definitely false. The hemoglobin is not distributed

homogeneously; in most cases there is a layer of bloodless, dead tissue (eschar) at the

surface. This layer reflects incident light, reducing the amount that interacts with the

blood beneath. The reflectance from a non-absorbing layer is dependent on light

scattering and is a function of wavelength.

If the amount of light of wavelength j, reflected from the sample is Ij, and the total

incident light is /, then the instrument response (RobsJ) is

Robs,= Ij / 0,j (23)

Robsj = (Ij + 1r) / (Ioj + 1r,) (24)

where Irj is the intensity reflected from the non-absorbing eschar layer, Ioj is the intensity

of the light that passes through the first layer and enters the second, blood-filled layer,

and I., is the intensity of the light returning from the second layer. The fraction of the

incident radiation that would be diffusely reflected from the second layer, if there were no

specular reflectance and if the first layer were removed, is R.,,

RS'i = I, / ISO'i (25)

and is related to the absorbance of the blood in the second layer (As8 ),

Aj _- log (1 /Rs,j) (26)

It can be estimated from the instrument response:

mS'j = (1oj Robs'j -1rj) / (10,j - Ir,j) (27)

Rs,j = (Tobs j - Sj) / (1 - Sj) (28)

Si = Ir'j / Ioj (29)

if Si is known.

For the burn spectra, S is not known. Instead, S was approximated by a second
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order polynomial, a function of the wavelength (A):

S ;: SO f(A
0) + S1 f(X 1) + S2 f(X 2 )" (30)

R. should be, approximately, the product of the transmittances (Tk) of the hemoglobin

species (k) times their concentrations (Ck).

R, Z kH (ck T) (31)

And therefore

(Tobsj - S ) / (1 - S ) =kl (Ck Tk) (32)

There are 3+k variables which must be solved simultaneously (SO, s 1, S2, c1, c2, ... Ck) by

using a non-linear curve fitting algorithm and minimizing the spectral fitting error:

error = (Tobsj - S ) / (1 - Sl) - kf (Ck T) (33)

The Gauss-Newton algorithm supplied by Mathworks,32 gave satisfactory results, under

the following constraints:

Ck >_ 0 (34)

0:< SJ < 1 (35)

The reconstructed spectrum (AobS) is then

TobSJ =TsJ (1 -Si) + Si (36)

Aobsi - Iog(Tobsj) (37)

The transmission spectra of hemoglobins and the functions f(10), f(X 1), and f(,.2)

are shown in Figure 31. The reconstructed spectra for the two examples are shown in

Figures 32 and 33. In general, the fit was not improved if S was assumed to be 0 th order

with respect to wavelength (s1 = 0 and s2 = 0). When S was 1 t order, there was

significant improvement; nearly all of the systematic distortion was accounted for. Adding

the 2nd order improved some of the more unusual spectra, but generally had little effect

on the "typical" spectra. The 1 = order model indicated that deep burns usually have more

than 9% acid methemoglobin (Figure 34) and correctly classified 90% of the injuries.
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Skin Temperature Model

In the second year, spectra were acquired from the forearms of healthy volunteers.

Their skin temperature was varied from 9 to 35 OC and measured with a thermistor at the

surface. The spectra, after second derivative transformation, were analyzed by Multiple

Linear Regression (Equations 12-14) and were found to correlate to the skin temperature

(correlation coefficient R = 0.982), with a standard error of prediction of 1.4 0C. This

experiment is described in the previous report.43 The equation was

t = 22.7 + (1.21x106) r'1015nm - (1.44x10 8) r1073nm - (3.85x10 S) r'i1 6 nm (38)

where rio 5fnm is the second derivative (Equation 7, gap=23) at 1015 nm and t is the

temperature in °C.

The model for estimating skin temperature in normal skin was used to estimate the

temperature of the burn wounds (Figure 35). The results suggest that deeper burns are

cooler than shallow burns (Figure 36). The average estimated temperatures were 32 ±

7 and 27 ± 7 for shallow and deep burns (P<0.01). Thermography, using emitted

infrared light, has also shown that deep burns are cooler than shallow,11, 12 but that such

measurements are extremely sensitive to cooling caused by evaporation of surface water.

NIR reflectance should be less sensitive to surface effects, since it measures that

temperature within the skin and below it. The model used here is not optimal; it is derived

from healthy skin. A more accurate model could be obtained empirically, if the

temperatures of wounds could be measured by a contacting or invasive probe, or

theoretically, if the spectral non-linearities were better understood.

Although several features in the NIR spectra, including water temperature correlated to

burn depth, none were as useful as the hemoglobin bands, nor did they improve

prediction. It is likely that there is still much useful information in these spectra, but in the

absence of physiological reference data, this information could only be extracted by
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rigorous application of diffuse reflectance theory.

BDI and IBDI Simulations

Now it is possible to explain the predictive ability of the old Burn Depth Indicators

(imaging and non-imaging). Both instruments used baseline-subtracted, single-

wavelength normalized data. The baseline offsets were approximated by the instrument

response of the NIR LED (880 nm) or filter (880-1100 nm) and the remaining data was

normalized to the response of the Green (560 nm). The methemoglobin concentration

was then, inadvertently, approximated by the normalized response of the Red (640 nm).

The exact mathematics are slightly different, because instruments used the instrument

response (R) rather that log(I/R), but the principle is the same.

In order to compare the prediction results from our spectrophotometer with

predictions from the Burn Depth Indicator (BDI) and the Imaging Burn Depth Indicator

(IBDI) built previously, the BDI and IBDI responses were simulated from our spectra. The

emission spectra of the light emitting diodes (LED's) in the BDI were simulated as

Gaussian-shaped peaks with maxima at 550, 640, and 880 nm and band widths (fwhm)

of 70 nm. 21'2 The spectra of the IBDI filters (Figure 37b) were obtained from the

literature.2° The responses for the near infrared LED and filter are somewhat uncertain,

because our spectral data between 750 and 890 nm is unreliable and was not used. The

simulated results (Figures 38a and 38b), however, are reasonably close to those obtained

in previous work.19'2 For the few wounds for which IBDI images were acquired, the

simulated results agree with the images. The burn sites used in this study seem to have

a slightly wider range, both for the Red/NIR and Green/NIR ratios, than those used in

previous studies, which is consistent with our attempt to select the widest variety of

injuries. The accuracy of the BDI and IBDI simulations for prediction burn depth was
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about 77 and 79%, respectively. VanLiew and Moore reported 79 and 84% accuracies

for different sets of indeterminate burns for the two instruments. 18,20

Proposed Model for New Imaging-Burn-Depth-Indicator

These results show that the model used for the Burn Depth Indicators was

essentially sound and from the perspective of burn physiology, basically correct, though

its explanation was erroneous. The choice of wavelengths, however, could be

substantially improved. First, the filter originally selected for baseline subtraction (880-

1100 nm) measures a large absorbance band at 970 nm (Figure 37) as well as the

offsets. This band arises, in part, from the water in and on the skin. The water

absorption is variable but not well correlated to burn depth. The 880-1100 nm filter also

measures the absorbances of hemoglobins (Figure. 1 b), but the path length in this region

is much longer than in the visible region. It is uncertain whether the blood in the volume

sampled is representative of the blood in the skin or primarily below the skin.

Furthermore, the BDI and IBDI simulations produced comparable results, in spite of the

fact that the wavelength ranges used for baseline correction were significantly different.

Therefore, little relevant information is lost and some interference is avoided by moving

the baseline-correction filter to 650 or 700 nm, where the absorbances are significantly

lower.

Second, the normalization filter could be narrowed and shifted to produce a more

reliable response. There is a pronounced, non-linear distortion of the spectra which

affects the 550-580 nm region where the hemoglobin absorbance is particularly strong.

In the spectra uf whole blood (Figure 1 a), the two oxyhemoglobin absorption bands (535

and 570 nm) have similar intensities. In the burn spectra, however, the 535 nm band is

decreased relative to the 570 nm band, and the degree of distortion is unrelated to burn
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depth. The distortion is probably caused by scattering, and scattering is highly

wavelength dependent. Therefore, the scattering at 630 nm is likely to be more similar

to that at 570 nm than 535 nm, and the former should give a more accurate normalization

for the 630 nm methemoglobin band. Simulations of fixed-filter instruments using various

possible normalization filters confirm this. The normalization LED for the BDI had a 80 nm

band width and was at 560 nm, sampling both oxyhemoglobin bands equally. The filter

in the IBDI at 540 nm was worse, sampling only the most distorted portion of the

oxyhemoglobin spectrum. A filter with a narrower band width, 30 nm or less, and located

at 570 nm should give a more reliable normalization.

Third, the methemoglobin filter should be optimized. The filter used previously had

a 80 nm band width and was centered at 640 nm. The methemoglobin absorbance peak

is at 630 nm, and for the normalized spectra, the wavelength that correlates most to burn

depth is 625 nm (Figure 26). The band width of the methemoglobin band is

approximately 40 nm. A narrower filter, 40 nm fwhm or less, centered at 630 nm should

give more precise estimates of methemoglobin absorbance.

One possible filter selection might include three 20-nm band pass filters at 650,

570, and 630 nm. If the apparent absorbances (log (1/R)) of the three filters are A6.,

A..., and A., respectively (Figure 39), then the burn depth (D) is estimated by

D = (Ar - A6m) / (A57o- A~o) (39)

The discrimination point, calculated the same way as the discrimination plane for the

rotated PCA scores, was found to be 0.104. Injuries for which D is greater than 0.104

were deep and the rest were shallow. One hundred one (92%) of the sites were correctly

classified by this model, and 97 (88%) were classified during cross validation. This model

was significantly more accurate (88%) than the IBDI simulation (79%) for the 104 sites

simulated (P <0.06 for paired data). Small variations in the band width or mean
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wavelength of the filters do not significantly affect prediction ability, indicating that an

instrument using this algorithm would be relatively tolerant of manufacturing variations.

Although binary predictions (shallow or deep) are convenient, it is often useful to

rank injuries on a continuous scale, so that the size of the burn and patient comfort often

may be weighted against the estimated healing potential. The proposed algorithm can

be used to produces a continuous scale (D) as well as binary predictions. For sites

which were known to have healed in the third and fourth weeks post burn, there is

roughly a linear correlation between instrument response and healing time (Figure 40).

The estimated number of days required for healing (H) is

H = 30D + 15 (40)

This relationship is not applicable to sites which heal in less than two or more than four

weeks, but such information would rarely be important in management decisions.

For sites which heal between 14 and 28 days, the error in this model (± 3 days)

is comparable to the uncertainty of the reference method (± 2 days). Whether or not a

wound was healed (entirely reepethilialized) is difficult to determine precisely. Even

among the Burn Center staff, opinions differed by a day or two. For wounds whose

outcomes were described by patients over the phone or extrapolated from the nurses'

last observations, the uncertainty was about ±3 days.

CONCLUSIONS

With the LT spectrometer we are able to observe absorbance bands from most of

the major constituents of skin. The instrument is sensitive enough to monitor changes

as small as those induced by only a few degrees elevation in surface temperature. The

techniques used are completely non-invasive, non-contacting, and non-destructive and

require only a few minutes, making them suitable for use on burn patients.



34

In spite of the non-linear effects of light scattering and multiple layers, hemoglobin

speciation can be estimated from visible reflectance measurements of burn wounds.

Further, these estimates correlate to the depth of the injury. Severely elevated levels of

methemoglobin have been observed in deep partial thickness and full thickness burns.

This suggests that the Imaging Burn Depth Indicator estimates burn depth by analyzing

the small color changes caused by the presence of methemoglobin. The IBDI, initially

designed to measure deoxyhemoglobin, can be significantly improved by optimizing its

filters to detect methemoglobin. The resulting instrument would be fast, accurate, non-

invasive, and non-contacting and could produce a map of a wound, color-coded to

indicate healing potential. This improved instrument could be used as a practical guide

for burn treatment decisions and may assist in the study of burn physiology.
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FUNDAMENTAL STUDIES OF WATER

INTRODUCTION

In order to understand the real factors that lead to the changes in reflection spectra

from the burn sites, we have to investigate the temperature dependence of the water

combination bands in the wavelength range used in our in vivo studies of human tissue.

The main goal of these studies is to understand the structure of the observed peaks and

the kinetics of the real molecules and structures that causes the observed changes in

spectra. Another problem arises from the nonlinear dependence of the reflection spectra

on the extinction and scattering of the tissue. In order to build a realistic model for

temperature dependent reflection spectra, we need to find the "pure components" of the

spectra and their behavior upon change of temperature. As long as water is the

dominant component of tissue, understanding the structure of water and specifically how

hydrogen bonding affects NIR spectra is one of the prominent problems in biophysics.

The structure of liquid water remains a most puzzling problem in the chemistry of

solutions and electrolytes. Despite numerous attempts to build a consistent model of

water through empirical data collected over the last 60 years, it must be admitted that no

single description satisfactorily explains the majority of the collected data." In principle,

vibrational spectroscopy provides a precise tool for elucidation of the various species

existing in water and water solutions. However, even in such a straightforward endeavor

as deriving thermodynamic properties from IR absorption spectrophotometry and Raman-

spectroscopy, the results are in poor agreement with each other and with other methods

such as calorimetry. The main source of this ambiguity in spectra interpretation is

concerned with the problems of the baseline determination 45 and with the difficulty of

interpolation and deconvolution of broad bands which undergo subtle changes. A
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number of investigators have attempted to deconvolve the absorption bands into an

arbitrary number of gaussian bands. There is no theoretical reason for this procedure

and the results are not consistent with any known theory. Recent advances in short

wavelength NIR spectroscopy, driven by new technology for multichannel silicon

detectors, makes this region of the water spectra, where only overtone and combination

bands exist, very attractive for investigation. Indeed, many models of water explaining dif-

ferent features of the SW-NIR exist in the literature.6' 4

The first studies of NIR combination bands were done more than three decades

ago by Suhrmann and Breyer.4' 47 More recent investigation of NIR bands and a

suggestion of a model containing three water species have been described by

G.R.Choppin and K.Buijs in the early 60's.49"5° They proposed that three bands can be

distinguished in the absorption band of water between 1100 and 1300 nm, giving the

spectral assignments and the extinction coefficients for each band. The concentration of

each of the three absorbing species was calculated as a function of water temperature.

Using this model and the concentration of each species, a number of the properties of

water were calculated. The species were assumed to be non-bonded (monomer) and

hydrogen bonded (dimer and trimer) intramolecular complexes. Their enthalpies were

calculated from Van't Hoff equilibrium equations. Subsequently, different authors

proposed models of water with two5° and even five species s° and many theoretical

papers examining different models appeared in the last three decades. The most

popular is the model proposed by Choppin and Buijs, and later elaborated by Senior and

Vand2, that explains the spectroscopic data in terms of bonded and nonbonded groups

of molecules in water, is referred to as a mixture model. Opposed to this model are

continuous models of the water structure.3 The proponents of continuum theories

emphasize the continuous evolution of the broad bands, rather than trying to deconvolve
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them into substructures. From our point of view, the discrepancy between these two

classes of the theoretical models appears to be more semantic, and they are supplemen-

tary rather than contradictory. In recent study of infrared spectra of aqueous dispersions

HObner et al.ss have pointed out the danger of interpreting complex spectral bands solely

on the basis of spectral shifts. They cite examples where deconvolution of the complex

band explains the spectral shift in terms of discrete components, while the frequency shift

of overall line contour leads to the opposite conclusions about the phase transition

studied. The main argument against the structural (mixture) models of water is based

on a statement that those models are not able to explain the entire collection of empirical

data from spectroscopy, thermodynamic, and neutron diffraction. Nevertheless, in some

recent papers 57 , spectroscopic studies of the 2v1 + v3 combination band (960 nm) in

a wide range of pressures and temperatures has led to a reconsideration of the mixture

model involving three species. In these papers, certain features of the continuum model

are retained by use of the concept of energy bands2 rather than discrete sharp energy

levels. This model proposes a distribution of the hydrogen bond energies grouped

around three component bands S,Sj and S 2, i.e. a model featuring a relatively small

number of distinguishable molecular species with continuous distribution of hydrogen

bond length and angles associated with each specie. The combination band peak has

been resolved into three gaussians with constant positions and widths. 5 7 Similar results

have been presented by V.Fornes 4ind J.Chaussidons8 for the v2 + v3 first combination

tone of water molecules. Both groups elaborate quantitative results for the energy of the

hydrogen bond formation (rupture). All of the above mentioned investigators derived their

data by fitting the spectral bands to the sum of two or more gaussians, in most cases

with the aid of an analog "curve resolver".

Recent advances in multivariate statistics and low-noise NIR spectrometers
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provides an impetus for restudy of the spectra of pure water as a function of temperature.

Coupled with advances in instrumentation for high precision data acquisition are advances

in data analysis. At present, there seems to be no existing methodology for quantitatively

deciding the number of species contributing to water spectra. Clearly, arguments based

upon the existence or absence of isosbestic point do not appear definitive nor do

observations of spectral shifts of the mean position of complex peaks.

It is the purpose of this study to describe a technique for obtaining a lower bound

to the number of species contributing to a series of spectra taken as a function of some

external variable(e.g. temperature, pressure) within the linear additivity constraint. This

technique which we call "Chemical Regression" was first proposed by Box and later

described fully by Lawton and Sylvestre.59W° The method to be described more fully in

the theory section relies on a description of the spectra in form of linear combination of

the eigenvectors of the spectral data matrix. Criteria are available to determine a lower

limit to the number of eigenspectra required to describe the signal variance while

eliminating the noise variance. If the number of eigenspectra is small it can be argued

that the mixture model has merit. On the other hand, a finding that a large number of

basis vectors must be retained might be used to bolster the continuum model. Not only

can a lower bound to the number of components be found, but also estimates of the

spectra associated with each species can be obtained. This is accomplished by rotation

of the abstract eigenvectors into a set of vectors which obey physical constrains

appropriate to the problem. Thus the necessity to assume that the spectral shapes of the

compouents is gaussian is ei, ninated and the spectral profiles are derived directly from

the data. Constraints may be imposed not only on the spectra, e.g. positivity, but may

also be imposed upon the way in which the intensity varies with the external variable (i.e.

we may postulate a model for the effect of physical variance and derive the physical
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parameters by least square fitting). Thus it would appear that chemical regression

potentially provides further insight into the mechanism for spectral changes of water with

temperature, yielding estimates for the number of species involved, the thermodynamic

parameters governing their interrelationship and estimates of the spectra of each.

In this study we have used this new method to reexamine the 960 nm combination

band in pure water. This band demonstrates a strong dependence on temperature

changes and has a well defined isosbestic point, that could be a sign of the presence of

two or more species in pure water. 'Another important reason for choosing the SW-NIR

range for examining the structural model of water is connected to the evident fact that in

this range the shift between the spectral components-species, if they do exist, would be

more distinguishable4 5 , and their separation could be less ambiguous.

EXPERIMENTAL

The measurements were made with an in-house constructed SW-NIR diode-array

spectrometer 1 and a 4-cm optical path length quartz cell, and repeated with the Hewlett

Packard diode array spectrometer HP-6582A and a 2-cm cell inside the HP-spectrometer.

In the case of the home-made spectrometer, the radiation was delivered to the cell with

a fiber optic, which made temperature control more convenient and reduced fog on the

windows. Temperature control was achieved by equilibrating the sample cell in a water

bath at a fixed temperature. The temperature of the cell was measured with a

thermocouple and the signal was digitized and registered on the computer's hard disk

simultaneously with the digitized spectroscopic data from NIR spectrometer. The

measured temperatures are believed to be correct to within 0.50C. The spectra of the

pure distilled and deionized water in the spectral range 850-1100 nm were taken over the

temperature range 10 - 80 0C. The cell filled with CC14 was used as reference. The
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spectra are depicted in Figure 41. The spectra contain visible baseline offset and a slope.

The nature of this bias and it's subtraction are discussed below. Nevertheless, we did

not take special measures to improve the absolute measurements of the temperature, but

the rate of the spectral scanning (60 scans per second) allowed us to reduce the noise

by repetitive averaging. We believe that our experimental data for the studied

combination band are the most precise at this time.

RESULTS

The temperature dependent offset could be referred to the changes of refractive

index of water with the temperature. Fresnel reflection R changes according to the

expression:

R= (n-1)2/(n+1) 2  (41)

where n = nq/nw, nq and nw are refractive indexes of quartz and water respectively. The

changes in nw in the entire temperature range are less than 1.5% and corresponding

change in R are of order of 0.01. Taking into account that the cell has two interfaces with

water and the effective absorbance will increase with the temperature (the refractive index

and the reflectance are respectively decreasing), the baseline shift is estimated to be

within 0.02 absorbance units, in good agreement with observed data. Now,

understanding the nature of the baseline offset we can subtract it. The bias that is due

to the strong absorption bands existing in the vicinity of the investigated peak could be

approximated by the straight line and subtracted in the same way. After subtracting the

offset and the slope the spectra appear more regular (Figure 42). We have taken into

account the changes of the water density with the temperature. These small corrections

are within 1.5% of the absorbance value.

In order to build a realistic model of water we need to determine the number of
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latent variables that can describe the variance in the obtained spectra. There are different

approaches to this problem. Most of them are based on the mathematical procedure of

separating the noise or the bias from the real variance. This mathematical procedure is

called Singular Value Decomposition (SVD). It consists of representation of the spectral

matrix of absorption A in the form:

A=USV' (42)

where S is diagonal matrix with the nonnegative diagonal elements in decreasing order,

and U and V are unitary matrices, V' denotes the transposed V matrix. The columns of

A represents the spectral vectors at a fixed temperature. The rows of A contain

information about the variation in absorption at a fixed wavelength. We can also

represent the experimental matrix A in the form

A=DC + E (43)

where matrix D contains only spectral components of the mixture and, the matrix C

represents the concentration of the different components depending on the variable

parameter (in our case the temperature). Matrix E contains experimental noise. From

Equations 42 and 43 we can derive an equation:

DC=USV' (44)

where U, S, and V are truncated matrices containing only the vectors and eigenvalues

which are meaningful for the problem, namely they take into account the variance in the

spectral matrix A and reject the noise. The representation of the experimental matrix A

in the form of Equations 43 and 44 is well known as Principal Component Analysis

(PCA).Y PCA is a powerful tool in separating the noise from the real spectral

components and estimating the most likely number of latent variables (meaningful singular

eigenvalues) in the matrix A, that can describe the variance in A with reasonable

precision. Since the determination of the number of "real" Principal Components and
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elimination of those which describe the variance of the noise is an ambiguous task, we

use auxiliary techniques, such as Evolving Factor AnalysisO. The main concept of EFA

is a graphical representation in which normalized (divided by the trace) singular values

of the submatrices of matrix S in descending order versus the constituent, are displayed

and examined for "emerging" eigenvalues. EFA has been used to analyze spectra,

consisting of strongly overlapped peaks62. The normalized eigenvalues usually are

depicted on a logarithmic scale. For the matrix A, corresponding to the spectra shown

in Figure 42, EFA evidently shows three emerging eigenvalues. The results of EFA are

illustrated in Figure 43. The investigation of the next spectral eigenvectors from matrix U

shows that they contain much more noise than the first three, and hence they are useless

for constructing the set of real spectral components. Therefore, PCA analysis suggests

the same rank of three. Consistent with the estimation of rank three is the structure of

the spectral eigenvectors as shown in Figure 44. These eigenvectors are largely free of

noise. Examination of the higher eigenvectors showed them to be highly contaminated

with noise (Figure 45) and too irreproducible to be of value in representation of our data

set. Hence within our current signal level and reproducibility, a basis set of three

components seems defensible. Now, starting with the assumption of three components,

we can try to rotate our spectral eigenvectors (Figure 44) to the set of real spectral peaks.

The procedure of nonlinear regression based on the postulated reaction has been

described by Shrager4'6. This procedure of recovering the real spectral components

and concentrations (titration), namely calculating the matrices D and C from the matrices

U,S and V implies that one makes some reasonable assumptions about the kinetics of

the system under consideration, and then finds the transformation which fits the rotated

vectors of the V-matrix (so called "scores") to the imposed model. After making the

decision about the rank of the data, the next step is to postulate a model for the kinetics
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of the reaction. This will, in turn, provide the means for recovery of the pure spectral

components and the equilibrium constants. From the above described analysis of the

rank of our spectroscopic data, it follows that there are three distinguishable molecular

species in pure water. The postulation of thermodynamic equilibrium among all three

species leads to a set of equations for the concentrations C of different species:

C2 = Clexp(-AH12/RT + AS2)

C3 = Clexp(-AH 13/RT +AS 3) (45)

CI +C 2 +C 3 = 1

where the ANj and AS, are the relevant enthalpies and entropies of the imposed reaction.

The equilibrium constants are: K1 =C 2/C1 , K2=Cl/C 3 , K3=C 2/C 3=KIK 2 , and log(K)

versus reciprocal temperatures 1/T are linear functions. Under these assumptions we

can rotate the titration eigenvectors' from V with the aid of 3 by 3 matrix T, in order to

yield the equation:

V'=TC (46)

Comparing Equations 42 and 44 we can derive the matrix D, containing the pure spectral

components,

D=UST (47)

The problem of calculating the transformation matrix T is central to this nonlinear

regression procedure. We used the Nelder-Mead simplex optimization algorithm, that

solved Equation 46with four unknown nonlinear parameters AH 12, AH13, AS2 and AS 3, and

nine unknown linear parameters, that actually determine the matrix T, in the least square

sense. The routine returns the unknown parameters and the norm of the difference

vector between the functions C, from Equation 45 and rotated vectors V, that serves as

a measure for this nonlinear fitting. The original "scores" from the V matrix and rotated

to the real concentration C, are depicted in Figures 46 and 47 respectively. Now after
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calculating the T matrix we can recover the pure spectral components with the aid of

Equation 47. Three spectral components shown in the Figure 48 were recovered with the

above described nonlinear regression technique. Figure 49 shows the spectral

components recovered from different data, obtained from different spectrometers, and

demonstrates the level of confidence in recovering the spectral components with the

chemical regression. The returned enthalpies for the reactions aHli are: AH 12=2.6

kcal/mol, AH31 =3.6 kcal/mol. The first one corresponds to the well known value nf the

heat of hydrogen bond formation in pure water. The latter is probably the heat of

formation of the intermediate form of hydrogen bonded specie in water. This dependence

is very sensitive to the recovered nonlinear parameters and should viewed qualitatively

rather than reflecting real entropies and enthalpies of the hydrogen bond formation.

Stability analysis of this nonlinear regression procedure have been made, by adding

artificial random noise to the experimental spectral data. The routine of chemical

regression demonstrates high stability in recovering spectral components but fairly poor

reproducibility for concentrations. This feature of chemical regression is not unknown but

has to be understand in terms of illposed problemsW. The values cited above correspond

to the spectral components depicted in Figure 48 and are probably not very reliable, but

the shape of the recovered spectral components are reproducible for different sets of

data and demonstrates high stability upon small random perturbation of the initial spectral

data. Using pseudoinverse operator and recovered spectral components we were able

to calculate the experimental concentration matrix C.XP (closed circles in Figure 47) from

the matrix D.

C.,= pinv(D)A (48)

pinv in Equation 48 denotes operation of pseudoinversion, according to definition

pinv(A)A = I, were I is a unity matrix.
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The spectrum which belongs to the specie which dominates at high temperature

is the most blue shifted and narrowest of the spectral components, indicating the least

amount of hydrogen bonding. The spectrum from the specie which exist through the

range of temperatures is intermediate in spectral shift and width. The low temperature

specie is the most red shifted and broadest consistent with a high degree of hydrogen

bonding, and reflects the statistical nature of the different length of hydrogen bonds in

water clusters. Thus the evolution of the spectra is in agreement with the many studies

of effect of hydrogen bonding on spectra.

Our analysis of the temperature dependent spectra of the 960 nm combination

tone peak demonstrates that the three spectrally and structurally distinguishable species

are needed to explain the evolution of the spectra within the framework of a simple

thermodynamic model. The attempt to deconvolve the spectra imposing a two species

model (bonded and nonbonded structures, being in thermodynamic equilibrium) derives

unrealistic spectra of the components and thermodynamic parameters. It seems very

probable that more precise spectral data and absolute temperature measurements would

lead us to reconsideration of the minimal number of species needed and consequently

the imposed thermodynamic model. Such studies would demand a substantial

improvement of the spectroscopic apparatus and probably a more diverse approach to

this problem, exploiting different nethods of CARS spectroscopy of Raman-active

vibrational transitions or more precise investigation of lower overtones in the NIR range

of water spectra. Such studies are complicated by the high level of noise due to the high

extinction coefficient and problems of temperature and flow control inside very thin cells.

CONCLUSIONS

In this study we, for the first time, applied the powerful technique of multivariate
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statistics and nonlinear regression to the problem of water structure. Our findings support

the mixture model of water with at least three species. For the first time, we recovered

the pure spectra of these species from an imposed explicit physical model.

Nevertheless, at this time we don't have a clear understanding of the physical nature of

these species and the relevant energies of reactions. However, this model can be used

as an analytical approach to the interpretation of water spectra and even for measuring

the temperature of the water-containing samples. The obtained spectral components can

be exploited for developing a statistical theory of hydrogen bonding in water and can be

helpful in verification of the numerous theories6' 67 which try to calculate the shape of the

absorption and Raman band in pure water. The pure components found from the

temperature dependent spectra of pure water could be used for interpretation of the

temperature dependence of the NIR spectra of human tissue and for improving of the

quantitative prediction of the depth of burn wounds.
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MONTE CARLO SIMULATION OF HETEROGENEOUS TISSUE

The study of light propagation and reflection from tissue is central to many medical

and biomedical applications of light. For diagnostic purposes, such as noninvasive optical

spectroscopy, the light that is diffusely reflected from or transmitted through the tissue

may be measured to probe the metabolic, physiologic, or possibly the structural status

of the tissue. In previous sections of this report, we stated that Beer's laws and

multivariate were used to analyze reflection of light from tissue, a medium in which

scattering and absorption occur. Beer's Law is particularly troublesome when both

scattering and absorption are strong. Any further improvement of our predictions based

on a multivariate statistics will depend on a proper algorithm of reflectance spectra

evaluation, involving subtraction of temperature dependent water spectra and comparison

of the transmittance in vivo and reflectance spectra of oxy - and deoxy- hemoglobin.

The problem of the deconvolution of the remittance spectra of tissue have been

discussed in many papers. It is well known that changes in the distribution of scattered

light in the skin that result from variations in the hematocrit and volume fraction of blood

contained in the dermis may affect the calibration of the instruments used in pulse blood

oximetry or burn wound evaluation. It could be extremely difficult to perform controlled

experimental studies of these effects, especially in the frequency domain. Therefore

mathematical models and computer simulations of light propagation and diffusive

reflection from tissue are essential to guide current applications and to promote further

developments in biomedical optics.

The three most common mathematical approaches to the study of light

propagation in tissue are based on the Kubelka-Munk, random walk, and

radiative-transport model. Most of the studies have been done for the semi-infinite

homogeneous model of tissue, and for fixed scattering parameters and a given
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wavelength of light. The importance of modeling in the wide wavelength domain follows

from our simple simulations made for continuous homogeneous medium with the aid of

analytical expressions obtained by Wilson.6 We have used the spectra of oxy-, deoxy-,

and met- hemoglobin obtained during our in vitro studies, and have calculated the

extinction spectra that would be measured by our methods in tissue. The original and

simulated spectra are shown in

Figure 50. Solid lines represent original spectra, and dashed lines represent simulated

tissue spectra.

Even this simplistic approach shows the significant difference in spectral shape,

and emphasizes the importance of evaluating reflectance spectra properly in order to

improve our quantitative interpretation.

Our plan for research included following steps:

1. Development of a working program for simulations of photon transport in a random

scattering heterogeneous medium with inclusions (i.e., veins) with different scattering and

absorption parameters.

2. Numerical simulations of light distribution inside and outside homogeneous scattering

medium for a fixed wavelength and for a wide range of wavelengths.

3. Comparison of our numerical simulations with the existing experimental and theoretical

studies.

4. Numerical simulations of the reflected light distribution from the multilayer

heterogeneous medium with inclusions for the wide wavelength range of visible and

SW-NIR light (so-called "therapeutic window").

5. Numerical and theoretical studies of the pulse response from the heterogeneous

media.

We were not able to fulfil this program because of the termination of funding, but
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even the preliminary results appear promising and informative.

The basic principles of four different types of remittance spectrophotometry could

be understood from Figure 51.68 We developed a working program in FORTRAN

language, that was able to run on different computers: VAX/VMS, IBM-6000/RS, and

HP-6000. The program was able to simulate the random walk of photons in a scattering

medium with inclusions taking into account such effects as internal reflection and

refraction due to the different indices of refraction of tissue and air. Monte Carlo

simulations that include effects of geometrical optics have not yet been discussed in any

of the numerous published studies. We used as a guideline for our Monte Carlo

simulations a model by Bonner 70. Basic steps in the calculation of the single photon

path are obvious from Figure 52. The term "weighting" in Figure 52 refers to the

"intensity" of the photons, which decreases with path travelled according to the assumed

absorption coefficients in the medium. The computer code in FORTRAN is listed in the

Appendix B. The program was structured in several subroutines that made it flexible for

fast changes of parameters, shape of the light source, and the number and shape of

inclusions. The shape of inclusions could be given by algebraic equation or numerically.

We used basically two types of light sources, point and a radial source with a

homogeneous distribution of intensity. The typical number of inserted photons that gave

a reproducible intensity distribution inside and outside the tissue was 100000. The

simulations were time consuming. One run (for the fixed set of scattering parameters)

took typically 6-8 hrs. on the VAX computer and 0.5 hours of CPU time on an IBM-6000

workstation with performance of 2-3 Mflops per second.

The model of the heterogeneous tissue with radial inclusions is shown in Figure 53.

The results of the simulations were plotted as intensity contour lines. Figures 54-56

demonstrate the intensity distribution for a point light source just inside the homogeneous
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medium for the case without inclusions, one radial inclusion, and two radial inclusions,

respectively. The scattering parameters are shown on the plots. The intensity distributions

for a radial source in the homogeneous medium without inclusions and with one radial

inclusion are depicted in Figures 57-58. Figures 59-60 demonstrate the spatial and

temporal behavior of the reflected light, corresponding to Figure 57.

Therefore, in this chapter we report an innovative computer code for Monte Carlo

simulations of light remittance from heterogeneous media. Our results obtained over a

comparably short period of time with comparably modest computer resources could be

an impetus for further studies in this new and promising field of biomedical research.
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TABLE i.
Table of Assignments.

1764 Fat CH2 stretch, ist overtone
1731 Fat CH2 stretch, ist overtone
1728 Collagen
1708 Fat CH3 stretch, 1st overtone
1689 Collagen
1460 Water (Oth derivative) OH stretch, 1st overtone
1400 Water (2nd derivative)
1275 Collagen?
1213 Fat CH 3 stretch, 2nd overtone
1189 Fat CH3 stretch, 2nd overtone
1188 Protein in muscle tissue
1153 Water OH combination
1038 Fat CH2 combination
1014 Fat CH3 combination
958 Water OH stretch, 2nd overtone
929 Fat CH. stretch, 3rd overtone
760 Deoxyhemoglobin
576 Oxyhemoglobin
555 Deoxyhemoglobin
541 Oxyhemoglobin
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Appendix A
MATLAB Code for Rotation and Single-Plane Discrimination

function [Xmean,Scale,Rota] = spinc(X,C,Options)
% X = all data (samples by variables, more samples than variables)
% C = class vector, containing 1's and 2's only, 0's for Ignored data
%OUTUNE
% mean center
% scale
% rotate
%SUBROUTEINS NEEDED
% std, varwt, fisherwt
%OPTIONS
% 1 scale (Range, Auto, Variance, Fisher, none)
% 2 rotation steps
% 3 number of rotated variables to calculate
%function [Xmean,Scale, Rota] = spnc(X,C,Options)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SETUP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*********************************************************** CHECK SIZES *****
%CHECK SIZES

[m,n] = size(C);
If m- = I & n- = 1, error('Rotation: Too many constituents.'), end
if n>m, C=C'; [m,nJ=sze(C); end

[np,nv] = size(X);
If np- = m & nv- =m, error('Rotatlon: Incompatable matrices'), end
if nv==m, X=X'; [np,nv]=size(X); end

clear m n

if any(C- = 1 & C- =2 & C- =0), error('Rotation: Bad constituent values.'), end
ni = find(C= =1);

If length(nl)<2, en'or('Rotation: Too few of class #1'), end
n2 = find(C= =2);

If length(n2)<2, error('Rotation: Too few of class #2'), end

If -any((1 2 3 4 51 = = Options(1)),
error('Rotation: Not a valid scaling option.')

end
if length(Options) <3, Options(3) =nv-1; end
f Optons(3)>nv-1, Options(3)=nv-i; end

%******************************************************** SETUP MATRICES *****
%SETUP MATRICIES

PhiStepSize = 1 / Optlons(2);
Rota = eye(nv); %Main rotation matrix
Cycle = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PREPROCESS DATA



%******************************************MEAN-CENTER **

%MEAN -CENTER
Xmean = mean(X);
Data =X - ones(np,1)*Xmean;

%***********************************************SCALE

%SCALE (Sharaf, IIlman, Kowalski; "Chenornetrics", p.193)

If Options(l) ==1, %________________ Range scaling
for i=1:nv, Scale(i) = 1 / max(abs(Data(:,i))); end

elseif Options(1) ==2, %_______________ Autoscaling___
for I= 1:nv, Scale(i) = 1 / std(Data(:,i)); end

elseif Options(1) = =3, %______________ Variance weights
for I = 1 :nv, DataTmp(:,i) = Data(:, i) /max(abs(Data(:,i))); end
[Scale] = varwt(DataTmp,C);
for 1= 1:nv, Scale@)= Scae(I)/max(abs(Data(:,))); end

elseif Optlons(1) = = 4, %_______________ Fisher weights___
for I= 1:nv, DataTmp(:,i) = Data(:,i)/max(abs(Data(:,i))) , end
[Scale] = fisherwt(DataTmp,C);
for I = 1 :nv, Scale(i) = Scale(i)/max(abs(Data(:,i))); end

elseif Optlons(1) ==5,

%no scaling
end

for I=lI:nvv, Data(:,i) = Data(:,i) *Scale(i); end

% ROTATE (two vectors at a time)

for vanl = I :Optlons(3),
for var2 = (varl +1):nv,

%********************************TWO-VECTOR SUB-MATRICES***
%Choose vectors

Data2 = Data(:, [varl,var2]);
Rota2 = Rota(:, [varl ,var2J);
Axis = sqrt(2) * 1-1 1 -1 11 * max(max((Data2)));

~~ ~ROTATE (loop)***
%Spin about [0 01
for phlstep = 1 :Optlons(2),

%+ ........................................... Rotation Angle
%Rotate data

phi =phistep * PhiStepSIze * (2*pi);
rot =[cos(phi), -sin(phl); sin(phi), cos(phi)];
data =Data2 *rot,

rota =Rota2 *rot;

%+ ........................................ Distance Between Classes
%Distance between classes

[d,sign] varwt(data(:,1),C);
I sign = '-', d =-d; end
dist(phistep) = d

end %for phistep
%***********************************FIND MAXIMUM ANGLE **



%Maximize distance
%++++++++++++ +++++++++++++++++++++++++++++++++++++ Angle

maxphl = find( dist = = max(dist) );
if length(maxphl) > 1, maxphi = maxphi(1); end

phi = maxphl * PhiStepSize * (2*pi);
rot = [cos(phl), -sin(phi); sin(phl), cos(phi)];

%************************************************** NEW SUB-MATRICES *****
%New sub-matrices

%++ .. +++++++++++++++++++++++++++ New Matrices +++++
data = Data2 * rot;
rota = Rota2 * rot;
Data(:,[varl,var2]) = data;
Rota(:,[varl,var2]) = rota;

disp(['Rotation: Finnished variables ',int2str(varl),' and ',int2str(var2)])
end %for var2 = (varl +1):nv
end %for varl = 1:(nv-1)



funcion Dataewl= spnp(XeanScalR"tXp

function DataNewl spinp(Xmean,Scale,RotaXp)

[np ,nvj = size(Xp);

Data = Xp - ones(np,l)*Xmean;
for I =l1:nv, Data(:,!) =Data(:,I)*Scale@i; end

Data -Data * Rota;
forlI= 1:nv, Data(:,I)= Data(:,I)/Scale(i); end
DataNew =Data + ones(np,l)*Xmean;



function IdiscPointJ = disc(D,C);
" DISCc.m
" Finds the most discriminating point to separate two classes
" M.R.Balkenhol, 1/12/92

% D = data in two columns, column 1 is for discriminating
% C = class vector, I's and 2's only

% minE = best point (index and data value)
% E =number of misciassifications [index, classi, class2, both classes]

%function [discPointj = disc(D,C);

INPUT and SETUP

minD =mln(D(:,1));

maxD =max(D(:,1));

maxi =300;

Error =999*ones(rmii+1,;

Error2 = 999*ones(maxi+1,;
Index = zeros(maxi+1,1);

% LOCATION OF MOST DISCRIMINATING POINT

%***************************************Fewest Mispredictions
for I= 1:rnaxl,

I= i*(maxD-m~nD)/maxi + minD;
el = sum(D(:,l) >=j &C= =I);
e2 = sum(D(:,) < Ij&C= =2);
Error@i el + e2;

end

[minEs] min(Error);
minis = flnd(Error= =minEs);

%********************************Smallest Sum-of-Squares Error **

I =mln(mlnls): max(minis);
for W=,

j= 1*(maxD-minD)/maxi + minD;
ni = flnd(D(:,)> =j &C= =1 );
n2 = flnd(D(:,l) < j&C= =2);
Error2(l) = sum( (D((nl;n21, 1) - 1 ).^2

end

IminE,minil = min(Error2);
n = iength(minE);
If n > 1, minE = minE( round(n/2),:) end

dlscPoint = mlni*(maxD-minD)/maxl + minD;
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function [Cest,ep] =discp(disc,Dp,Cp);

" DISCp.m
" Sorts a predictions set (Classi < disc, Class2 > disc)
" M.R.Balkenhol, 1/12/92

% Dp = data In two columns, column 1 Is for discriminating
% Op = class vector, I's and 2's only (optional)

% disc =discriminating point, minE(1 ,2) from disc.m

%function [Cest] discp(disc,Dp,Cp);

INPUT and SETUP

[np,nvJ = size(Dp);

% SORTING DATA POINTS with respect to DISC

C2r I= 1:np,
If Dp~i,1) < disc,

Cest(l) = 1;
elseif DpI, 1) > disc,

Cest() =2;
else

Cest(I) = 0;,
end

end
Cest = Cost';

% DISPLAY (If Cp exists)

If nargin > 2,
errors = find( Cost - = Op)
plot(flnd(Cest= = 1), Dp(Cest= 1, 1), 'c6 +'.

flnd(Cest = =2), Dp(Cest= 2,1), 'rx',..
(I npl, (disc disc], 'b:',..
errors, Dp(errors, 1), 'c5o')

op = Iength(errors);
end



PROGRAM SVEIN A F ix7

REAL NO,NT
DIMENSION A(2), FLUX(100,100),ALR(l,600),ALT(11,600)
INTEGR"4 IX,IY
OPEN(UNIT- 1,F LE-'FVEIr.GGPSTATUS -'NEW')
OPEN(UNIT -F 2ILE ='LVEIN.GGISTATUS -'NEW')

C DEFINITION OF PARAMATERSS

C FLUX ARRAY THAT IS CELL HISTORIES ARE STORED TO CALCULATE
C A GRAPHIC DISPLAY OF FLUX.

C ALRALT ARRAYS THAT RECORD PHOTON PATHLENGTH ABOVE AND BELOW
C THE TISSUE INTERFACE

C THETA ANGLE THAT PHOTON WILL MOVE NEXT
C PLNGTH PATH LENGTH THAT PHOTON TRAVELS IN ONE STEP
C RHO DENSITY OF PARTICAL IN WHOLE BLOOD
C SIGMSV SCATTERING CROSS SECTION OF VEIN
C SIGMAV ABSORPTION CROSS SECTION OF VEIN
C SIGMAS SCATTERING CROSS SECTION OF TISSUE
C SIOMAA ABSORPTION CROSS SECTION OF TISSUE
C COBFS SCATTERING COEFFICIENT TISSUE
C CORPSV SCATTERING COEFFICIENT VEIN
C COEFA ABSORPTION COEFFICIENT TISSUE
C COEFAV ABSORPTION COEFFICIENT VEIN
C THETAC CRITICAL ANGLE CALCULATE FOR SURFACE
C TISSUE BOUNDARY

C NO INDEX OF REFRACTION OUTSIDE TISSUE
C NT INDEX OF REFRACTION OF TISSUE
C XOYO COORDINATES OF CENTER OF CIRCULAR VEIN
C RADIUS RADIUS OF CIRCLE
C SLNGTH ACCUMULATIVE PATH LENGTH
C NPHOTN NUMBER PHOTONS TO BE INJECTED INTO TISSUE
C INrMULIZATION OF PARAMETERS

DO 3001 - 1,100
DO 300 J - 1,100
FLUX(J,I = 0.0

300 CONTINUE
DO 3011 - 1,11
DO301J - 1,600
ALR(IJ) - 0.0
ALT(IJ) - 010

301 CONTINUE
N-2

A(l) - 0.0
A(2) = 0.0
THETA - 0.0
PLNGTH u 0.0
RHO - 5.003
CALL SECNDS(ISEED)
NPHOTN - 10000
SIOMSV - 56.58
S1GMAV 0 0.542
HEMAT = 0.41



BISE 5
CALL TISSUE(RAN)M1,RANDM2,COEFACOEFS,XSY,?LNGTHWEIGHTTHETA)
ENDIF
SUIGTH -SLNGTH +PLNGTH
IX INT(AINT(X/10.O))
IY INT(ABS(AINT(Y/10.0))) + 1
ENDIF

C TERMINATION OF PHOTON IN TISSUE

IF (WEIGHT.IT. =00)THEN
WEIGHT w 1.
GOTO 10
ENDIF
IF(Y ,LT. .)THEN
IP(IX .GT. 49 .OR. IX £13. ,5O .OR. IY .GT. 100)THEN
INC - INC + I
ELSE
PLUX(IX+S1IY+1) = ITWX(1X4.51,IY4I) + WEIGHT
INC INC+ I
ENDIF
GOTO I

C IF PHOTON IS AT SURFACE INTERFACE PROGRAM CALLS
C SUBROUTJN REFLECT WHICH DETERMINES HOW THE PHOTON
C WILL BE REFLECTEID

CALL REFLE~NOTrTHErnTACYXWWRTETA1,T1HETAT
1,RPERP,RPAR,XS)

JY - INT(ADSAINT(Y))) + I
IXS - INT(AINT(XSfIO.0))
IF(ILKGTH T. 600)THE-N
ILNTH- INT(SLNOTH/1O.0)
ALT(1.ILNOT1H) - ALT(1,ELNGTH) + WEIOHT'WT
ALRILNGTH) - ALR(1,ILNGTH) + WEIGHT'WR
1A - ABS(INT(XS/50.0)) + 2
IFQJA ,LE. 11)THEN
ALT(IAJLNGTH) - ALT(IA,ILGTH + WEIGHT-Wr
ALR(1A,ILNOTH) = ALR(LAJLNGTH) + W19GHT*WR
ENDIF
E14DIF

C RECORDING OF WHERE~ PHO0TON HAS TRAVELED DURING THIS INCREMENT

IF(IXS .GT. 49.01R. IXS. IT. -50)GOTO III
IF(IX .GT. 49.0OR. IX .LE. 5.501tO. JY .GT. I00)GOT() III
EF(WF .H. 1.0) THEN
FLUX(IXS+53,I) - FLUX(IX.St51,1) +WEIGHT
GOTO I Il
ENDII?
IF (MR .NE, I .0)THEN
FLUX(IXS +51,1) -FLUX(IXS +51,1) + W-IGI-TWT
FUX(IX + 5I,IY + 1) -FLUX(1X + 51,IY + 1) +WEIOHT*WR
ELSE

FLUX(IX + 51,Y + 1) FLUX(IX +S51JY + 3) +~ WEIGHT
ENDIF

ill CONTINUJE



IRNDIF
GOTO 1

10 CONTINUE

C CONSTRUCTION OF OUTPUT FILE THAT BUILDS A PILE WHICH
C CONTAINS INFORMATION ON THE FLUX DENSITY

DO 30 IY - 14100
WRrrE(,'("IY',j4,/,"IY IX FLUX'y')(IY-1)*10
DO 2DIX - 1,100

INPHOTN
20 CONTINUE

WRITE(I,'("'EOF")')
30 CONTINUE

C CONSTRUMION OF FILE THAT OUTPUTS INFORMATION OBTAINED FOR
C HISTOGRAMS OF TOTAL PHOTON PATHLENGTH BEFORE READMITTANCE
C AT THE TISSUE SURFACE INTERFACE

WRJTE-(2,'(/,'OUTSIDE,/,"L.ENGTHI ALL D050 D5O100",
IIX,-D100150 D15020")')

DO03033 J a 1600
WITE(7(6(I'3.X)))REAL(J)10.0,ALT(,J)/NPHOTN

!,ALT(2,1)/NPHOTNALT(3,J)/NPHOTN.ALT(4,1)/NPHOTNALT(5,j)/NPHiOTN
303 CONTINUE

WRITE(2("*EOF)')
WRITE(2,('OUTSIDET',/,'LENGTH DM0025 D250300 D*"05",,

t1XD35SO400 D400450 D450500"')
DO 304 K - 1,600
WRrZP(7(I3.6,IX)))RAL<K)*1.0,ALT(6,K)/NPHOIN,

lALT(7,K)/NPHOTN,ALT(R K)/NFHOTN
1,ALT(9,K)/NPHOTNALT(11,K)/NPHOTNALTO 1,K)/NPIHOTN

304 CONTINUE
WRITE(2'C*EOF")')
VVRJTE(Z'f(I,"INS1DEV'%/,"LENGTH ALL D05O D50100r,

I1X,"D100150 DLSO2W)
DO 3051 - W,0
WRITE(2,'(6(U13.6,1X)Y)RE.ALQY1'O.ALR(1,I)/NPHOTN,

!ALR(2I)/NPHOTN,ALR(3J)/NPHiOTNA(4,1)/NPHOTNAJA(5,1)INPHOTN
105 CONTINUE

WRfTE(2("EOF')')
WRITE(,'NSIDE2,/,"LENGTH D200250 D25030 D300350",

IIX.,"D35040 D400)450 D450.WX'Y)
DO03061 a1600
WRrfE(2,'(7(G,13.6j,]X)y')REAL(I)10.,ALR(6,l)/NPIOTN,

ILR(7I)/NPHOTN,ALR(8j)/NPHOTN
IAL(9,1)/NPHOTN,ALR(10,1)/NPIIOTN,ALR(III)/NPH4OTN

306 CONTINUE
WRITE(2,'("*EOF")')
STOP
END

C 00
C REFLECION

C
SUBROUTINE REFLECT(NONTrTHETATHTrAg Y.xWTWR,

rrHETAI,TI4ETAT,RPERP.RPAR,XS)
REAL NO,NT
THETAI - ABS(THETA - (3.1416/2.0))



TANTA - TAN(THETA)
JP(TANTA ERC. 0.O)TANTA = 0.00001
X'; X - Y*(.0/TANTA)
y --. *

c deee tbetai*180.0/(3.1416)
c dcepeet theaa*180.0/(3.1416)
c devoc thetac*180.0/(3.1456)

'FCI.ETAJ 1E. THETAC)THEN
TIIRTAT -ASIN((NO/NT) 'SJN nEAl))
IP(THETAI .0. 0.)THEN
%W - 1.0
WR . 0.0
GO'r o 
ENDIW
RPHRP -(.O)((SrN(TdAI-sEAT))/(SINTH.MA+TEAT)))
RPAR -(CTAN TEA-IMTT)/SN A+ THETAT)))
WR - (aW5(RPERP*RPERP + RPARRPAR)
WF 10L. WR

WT . 0.0
WR - 1.0
ENDIP

10 RETURN

ccSUBROUTINE RBLEr(NONTTTTnACyWWR,
c ITHETA1ITETATAPEPAPAR)
o REAL NONr
c TFTAJ - ADS(THETA - (3.1416/2.0))
C Y - -1,00Y
o IPCFHETAI 113. TIMTAC)TMiE

cTHIETAT - ASlN((NO/Nl)*SIN~rnErAl))
R PPERP - -b*(I"TI7TT)(I(]EA+lrl)

e RPAR - (~qr-PTIT4A)/SN~A+HTT)
c WRt (0OS)*(RPERP*RPERP + RPAR*RPAR)
c WT - 10 -WR
c ELSE
c WTr -o0
c WR '.1.0

c EI4DIP
c RETURN
c END
C

***9~9***...V..N.........~*,..*...*

SUBROUTINE~ V1N(RANDM1YDM,COEFAVcOEFVxYLNGTU,
I WEGHT,THETA)

TWCM - 2.00(3.1416)
THETA - TWOPI*(RANDMi)
PLNGTH -(l0AO(AD2)(0FV
x -X + (PLNGTHCOCMP-A))
v -y + (PLNGTH'%IN(TH!TA))
WEIGH4T -=EGMU(IO-~pN7i-CEA)
RETURN
END

****~**,**,*~**TISSUE O*@****se9*4*..



SIGMAS, 56.58
SIGMAA -0.0001

COLTS - (RHO*SIGMAS*HiEMATQ .0.-HEMAT))/(10E06)
CoEFSV - (RHO*SlOMSVHBEMAT(1.0.HEMA7)/(.OE06)
TWopI - 2.0(3.1416)
COEFA . (RHO*SIGMAA)/(10E0)
COEFAV -(RHO*SIGMAV)/(.0E'06)
WRIGHT - 1.0
WR -0.0
WI .- 0.0
NO w 1.0
NT m-1.s
THETAC -ASJN(tJO/NT
RPAR - 0.0
RPERP = 0.0
XO - 0.0
YO a -200.0
RADIUS - 150.0

C INITIALIZATION OF RANjDOM NUMBER GENERATOR AND THE
C GENERATION OF PHOTONS TO BE INSERTED

ICALL HSRPST(ISEED)
Do 10 1 . 1,NPHOTN
X -04
y 0O0
IX -0
IY -0
INC I
SLNGTH - 0.0
SwJTCH -1.0
FLUX(S1,1) - FLUX(51,1) + 1-0

C CALCULATION OF RANDOM NUMBER AND PO[N WHERE ITERATION
C OF PHOTO0N PATH LENGTHS wKILE IN MEDIA

CALL HSRPUN(NA)
IF (INC .GT. 500) GOTO 10
RANDMI - A(])
RANDM2 - A(2)

C INSERTION INTO TISSUE-

IF (SWITCH WE. I .0)THEN
X m 0,0
PU4OTH . (.1.0ALOG(RANDMZ))/(COEFS)
y . y + (.1.0)OPLNGTH
SWITH - 0.0
mmS

C CALCULATION OF PHOTON POSITION RELATIVE To VEIN AND TEST

C To SEE WHETHER PHOTON IS INSIDE OR OUTISIDE THE VEIN. PHOTON
C ENTERS APPROPRIATE SUBROUTINE WHERE PATI-LENOTH AND ABSORPTION
C IS CALCULATED

RCIRC . SORT ((X - XO) '(X - XO) + (Y.- YO) -(Y - Yo))
IFQ(Rc ~.LE. RADIUS)THEN

CALL VEIN(RANDM41IANDM2,COEFAv,CO)EFSVXIYLNGTH,WEIGHTTHETA)



SUBROUTINE TISSUE(RANDM1.RANJ)M2,COEFACOESXYPLNGTH
.,WRI.zHT,THElTA)

TWOPI =2bO(3.1416)

THETA =TWOPI*(RANDMI)

PLNGTH (.LVALOrC(RANDMZ))/(COEPS)
X - X +(PLNGTH*COS(THETA))
Y - Y +(PLNGTH*SIN(THETA))
WEIGHT aWEIGHTERXP((-I.O)*PLNGTH)(CORFA))
RUTURN
END

C SUBROUTINE SECNDSQISEC)
C iulcgor*2 idat(6)
CSinciude:'/sya/in&/timclnLftn!
C call CAL $DECODE LOCAL TJME(Wat)
C ISEC-IRToldat(6) + I00idat(5)
C returnD
C and


